A joint spatial and spectral SVM's classification of panchromatic images

نویسندگان

  • Mathieu Fauvel
  • Jocelyn Chanussot
  • Jon Atli Benediktsson
چکیده

The classification of very high resolution panchromatic images from urban areas is addressed. The spectral information, i.e. the gray level of each pixel, does generally not ensure a reliable classification. In this paper, we investigate the use of an area filter to extract information about the inter-pixel dependency. The classification is then performed using a Support Vector Machines (SVM) classifier. Using a linear composition of kernels, we define a kernel using both the spectral (original gray level) and the spatial information. A weighting parameter, controlling the relative importance of each feature, is introduced and tuned during the SVM’s training process. Experiments have been conducted on simulated panchromatic Pleiades data over Toulouse, France. Results obtained with the proposed approach is positively compared to those obtained with the standard use of gray value information only and classical SVM formulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)

Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Comparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas

Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...

متن کامل

Object Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images

Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007